Bigger isn’t always better. The Compact Filter Unit provides you with the best filtration at a size you can take anywhere. Tried and true, the CFU is the ultimate filtration system in power and mobility. And with easy to change Spin-On elements or heavy duty MF3s, you can rest easy knowing your filtration will always exceed your expectations.
Small size, huge results.
Designed specifically for limited space operations, the CFU maximizes power in a minimal package. Use the ergonomic handle to hoist the CFU to provide filtration directly within turbine nacelles or filter straight from the barrel to take out contaminants before they can ever reach your equipment.

The first stage of success.
Staged filtration allows a range of media selections for particulate and water removal to deliver ISO Codes right on target. Choose from six element configurations to get the perfect CFU for your toughest contamination problems.

Media matters.
DFE rated filter elements stay true to efficiency ratings and ensure the highest level of particulate capture and retention capabilities. And with media options down to $\beta_{2.5} = 1000$ you can be sure contamination stays exactly where you want it: out of your fluid.

Redefines standard filtration.
Knowledge of your system is the ultimate tool in the fight against contamination. With upstream and downstream sample ports located on every machine, the standard CFUs are anything but standard.

Different by design.
Built from lightweight aluminum and engineered for portability, the CFU is perfectly designed to filter new fluids during transfer and top-off bulk oil before use. For fluids already in service, use the CFU to flush them through the high efficiency elements for unparalleled levels of fluid cleanliness.

Completely customizable.
Every CFU can be specifically tailored to the job at hand so you get the perfect solution to suit your needs. With a variety of flow rates and power options, even the ability to color coordinate each CFU to your existing safety standards, the possibilities are endless for what you can do with the CFU.
CFU Quick Guide

CFUN model shown (2x MF3 in series)

- Closed ergonomic handle for easy lifting/hoisting
- Gear pump
- CFU inlet
- Filter assembly ΔP gauge
- Inlet sample port
- Outlet sample port
- CFU outlet
- MF3 Filter Assembly
- 8" bowl with HP60L8 series filter element
- Electric motor
- Lightweight aluminum frame
- Non-slip rubber feet

CFUL (2x HP409 in series) CFUD (2x HP75 in parallel) CFUS (2x HP75 in series)
Filter Sizing Guidelines

Filter Sizing Guidelines and Viscosity Conversion

Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Calculate ΔP coefficient for actual viscosity

Using Saybolt Universal Seconds (SUS)

\[
\text{ΔP Coefficient} = \frac{\text{Actual Operating Viscosity} \text{ (SUS)}}{150} \times 0.86
\]

Using Centistokes (cSt)

\[
\text{ΔP Coefficient} = \frac{\text{Actual Operating Viscosity} \text{ (cSt)}}{32} \times 0.86
\]

Calculate actual clean filter assembly ΔP at both operating and cold start viscosity

\[
\text{Actual Assembly Clean ΔP} = \text{Flow Rate} \times \Delta P \text{ Coefficient (from calculation above)} \times \text{Assembly ΔP Factor (from sizing table)}
\]

Sizing recommendations to optimize performance and permit future flexibility

- To avoid or minimize bypass during cold start the actual assembly clean ΔP calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ΔP should not exceed 10% of bypass ΔP gauge/indicator set point at normal operating viscosity.
- If suitable assembly size is approaching the upper limit of the recommended flow rate at the desired degree of filtration consider increasing the assembly to the next larger size if a finer degree of filtration might be preferred in the future. This practice allows the future flexibility to enhance fluid cleanliness without compromising clean ΔP or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics we recommend increasing the filter assembly by 1–2 sizes.
CFU Filter Sizing Guidelines

MF3 Options

<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>Units</th>
<th>Media 1M</th>
<th>3M</th>
<th>6M</th>
<th>12M</th>
<th>16M</th>
<th>25M</th>
<th>**W</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF3</td>
<td>L8</td>
<td>psid/gpm</td>
<td>0.324</td>
<td>0.252</td>
<td>0.206</td>
<td>0.156</td>
<td>0.151</td>
<td>0.143</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bard/lpm</td>
<td>0.006</td>
<td>0.005</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S75-76 Options

<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>Units</th>
<th>Media 1M</th>
<th>3M</th>
<th>6M</th>
<th>12M</th>
<th>16M</th>
<th>25M</th>
<th>**W</th>
</tr>
</thead>
<tbody>
<tr>
<td>S75</td>
<td>L8</td>
<td>psid/gpm</td>
<td>0.183</td>
<td>0.155</td>
<td>0.120</td>
<td>0.107</td>
<td>0.105</td>
<td>0.101</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bard/lpm</td>
<td>0.003</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>S75D</td>
<td>L8</td>
<td>psid/gpm</td>
<td>0.092</td>
<td>0.077</td>
<td>0.060</td>
<td>0.054</td>
<td>0.053</td>
<td>0.051</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bard/lpm</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.000</td>
</tr>
</tbody>
</table>

S409 Options

<table>
<thead>
<tr>
<th>Series</th>
<th>Length</th>
<th>Units</th>
<th>Media 1M</th>
<th>3M</th>
<th>6M</th>
<th>12M</th>
<th>10M</th>
<th>25M</th>
<th>25A</th>
<th>**W</th>
</tr>
</thead>
<tbody>
<tr>
<td>S409</td>
<td>L9</td>
<td>psid/gpm</td>
<td>0.296</td>
<td>0.250</td>
<td>0.194</td>
<td>0.174</td>
<td>0.170</td>
<td>0.187</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bard/lpm</td>
<td>0.005</td>
<td>0.005</td>
<td>0.004</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Max flow rates and ΔP factors assume ν = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula.
CFU Specifications

Dimensions
- **Height**: 21” (54 cm)
- **Length**: 21” (54 cm)
- **Width**: 12” (31 cm)
- **Weight**: 47 lbs (21 kg)

Connections
- **Inlet**: ¾” male JIC with 37° flare
- **Outlet**: ¼” male JIC with 37° flare
- **Hoses**: ¾” x 8 ft (2.4 m) suction female JIC or BSPP swivel, ½” x 8 ft (2.4 m) discharge female JIC or BSPP swivel

Operating Temperature
- **Fluid Temperature**: 30°F to 225°F (0°C to 105°C)
- **Ambient Temperature**: -4°F to 104°F (-20C to 40C)

ΔP Indicator
- **Trigger**: 22 psi (1.5 bar). Consult factory for other options.

Filter Assembly Bypass
- **Trigger**: 25 psid (1.7 bard). Consult factory for other options.

Materials of Construction
- **Frame**: Powder coated aluminum
- **Filter Assembly**: Aluminum head
- **Hoses**: Reinforced synthetic
- **Wands**: Stainless steel
- **Element Bypass Valve**: Nylon

Electric Motor
- **Type**: TEF, 56C frame
- **HP**: ½ hp, 1450-1750 RPM

Electric Connection
- **Cord**: 15’ (4.6 m) cord included installed on machine.

Pump
- **Type**: Positive displacement gear pump with relief valve. Maximum pressure on pump inlet 15 psi (1 bar). Consult factory for higher pressures.

Pneumatic Option Air Consumption
- **Value**: ~15 cfm @ 60 psi

Media Description
- **M**: G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta_x[\text{C}]=1000$ ($\beta_x=200$)
- **A**: G8 Dualglass high performance media combined with water removal scrim. $\beta_x[\text{C}]=1000$ ($\beta_x=200$)
- **W**: Stainless steel wire mesh media $\beta_x[\text{C}]=2$ ($\beta_x=2$)

Replacement Elements
To determine replacement elements, use corresponding codes from your equipment part number:

<table>
<thead>
<tr>
<th>Model</th>
<th>Filter Element Part Number</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFUD</td>
<td>HP75L8 – [Media Selection Code] [Seal Code]</td>
<td>HP75L8–12MB</td>
</tr>
<tr>
<td>CFUH</td>
<td>HP75L8 – [Media Selection Code] [Seal Code]</td>
<td>HP75L8–3ME-WS</td>
</tr>
<tr>
<td>CFUL</td>
<td>HP409L9 – [Media Selection Code] [Seal Code]</td>
<td>HP409L9–40WV</td>
</tr>
<tr>
<td>CFUM</td>
<td>HP60L8 – [Media Selection Code] [Seal Code]</td>
<td>HP60L8–16MB</td>
</tr>
<tr>
<td>CFUN</td>
<td>HP60L8 – [Media Selection Code] [Seal Code]</td>
<td>HP60L8–6AV</td>
</tr>
<tr>
<td>CFUS</td>
<td>HP75L8 – [Media Selection Code] [Seal Code]</td>
<td>HP75L8–25MV</td>
</tr>
</tbody>
</table>

Viscosity
- **Max viscosity rated for 200 cSt.**

Fluid Compatibility
- **Description**: Petroleum and mineral based fluids (standard). For specified synthetics contact factory for compatibility with fluorocarbon seal option. For phosphate ester (P9) or skydrol fluid (S9) compatibility select fluid compatibility from special options.

Hazardous Environment Options
- **Select pneumatic powered unit (Power Option 00) or explosion proof NEC Article 501, Class 1, Division 1, Group C+D. Call for IEC, Atex or other requirements. If Explosion Proof option (X--) selected, no electrical cord will be included.**

1. Dimensions are approximations taken from base model and will vary according to options chosen.
2. Selecting pneumatic power option removes electric cord.
3. Air consumption values are estimated maximums and will vary with regulator setting.
4. When sized and installed appropriately. Contact factory for applications above 200 cSt for sizing requirements.
Filtration starts with the filter.

Lower ISO Codes: Lower Total Cost of Ownership Hy-Pro filter elements deliver lower operating ISO Codes so you know your fluids are always clean, meaning lower total cost of ownership and reducing element consumption, downtime, repairs, and efficiency losses.

DFE Rated Filter Elements DFE is Hy-Pro’s proprietary testing process which extends ISO 16889 Multi Pass testing to include real world, dynamic conditions and ensures that our filter elements excel in your most demanding hydraulic and lube applications.

Upgrade Your Filtration Keeping fluids clean results in big reliability gains and upgrading to Hy-Pro filter elements is the first step to clean oil and improved efficiency.

Advanced Media Options DFE glass media maintaining efficiency to β0.7 > 1000, Dualglass + water removal media to remove free and emulsified water, stainless wire mesh for coarse filtration applications, and Dynafuzz stainless fiber media for EHC and aerospace applications.

Delivery in days, not weeks From a massive inventory of ready-to-ship filter elements to flexible manufacturing processes, Hy-Pro is equipped for incredibly fast response time to ensure you get your filter elements and protect your uptime.

More than just filtration Purchasing Hy-Pro filter elements means you not only get the best filters, you also get the unrivaled support, training, knowledge and expertise of the Hy-Pro team working shoulder-to-shoulder with you to eliminate fluid contamination.